Course Agenda			DUBATION	TIME	PAGE
1.1	Course Objectives				1-1
1.2	What is an Integral Abutment?	1			1-3
1.3	Why use an Integral Abutment?	1	0.5 hrs		1-6
1.4	When can an Integral Abutment be used?	1			1-7
1.5	How are Integral Abutments designed?	2			1-11
2. PE	NNDOT'S INTEGRAL ABUTMENT STANDARD BD-667M				
2.1	Pile Details	3			2-1
2.2	Abutment Reinforcement Details	3		With	2-7
2.3	Wingwall Types	4	1.25 hrs	Break	2-16
2.4	Additional Details	3			2-23
2.5	Section Review & In-Class Exercise				2-26
3. PE	NNDOT'S INTEGRAL ABUTMENT SPREADSHEET			1	
3.1	Spreadsheet Overview	5			3-1
3.2	Preparation of Input Data	6			3-3
3.3	LPile Analysis	7	3.25 hrs	12:00-1:00	3-17
3.4	Specification Checks	8		LUNCH	3-27
3.5	Interpreting the Output	8			3-32
3.6	Section Review & In-Class Exercise				3-33
4. PR		0			4 1
4.1	Example #1 – Overview	9			4-1
4.2	Example #1 – Preparation of Input Data	9			4-4
4.3	Example #1 – LPIIe Analysis and Output	9	1 E bro	VVIIII	4-7
4.4	Example #1 - Specification Checks & Interpreting Output	9	1.5 115	Dieak	4-10
4.5	Example #1 - Interior Beam PSLRFD Output	9			4-10
4.6	Example #1 - Exterior Beam PSLRFD Output	9			4-49
4.7		9			4-00
5.1	Two Span Configuration	10			5-1
5.2	Two Span Configuration – Mixed Substructure Types	10			5-4
5.2	Three or More Spans	10			5-5
5.4	Structure Modeling for Thermal Movements	10	0.5 hrs		5-6
5.5	Sample Problem	10			5-11
5.6	Section Review				5-21
CONCLUS	SION		L	L	
Perform Final Review of Major Sections					
Closing Remarks and Course Evaluations			1.5 hrs		
Admi	inister the Final Exam				